Connes’ Distance of One-Dimensional Lattices: General Cases

نویسندگان

  • Jian DAI
  • Xing-Chang SONG
چکیده

Connes’ distance formula is applied to endow linear metric to three 1D lattices of different topology, with a generalization of lattice Dirac operator written down by Dimakis et al to contain a non-unitary link-variable. Geometric interpretation of this link-variable is lattice spacing and parallel transport. PACS: 02.40.Gh, 11.15.Ha

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pythagoras’ Theorem on a 2D-Lattice from a “Natural” Dirac Operator and Connes’ Distance Formula

One of the key ingredients of A. Connes’ noncommutative geometry is a generalized Dirac operator which induces a metric(Connes’ distance) on the state space. We generalize such a Dirac operator devised by A. Dimakis et al , whose Connes’ distance recovers the linear distance on a 1D lattice, into 2D lattice. This Dirac operator being “naturally” defined has the “local eigenvalue property” and i...

متن کامل

Notes on some Distance-Based Invariants for 2-Dimensional Square and Comb Lattices

We present explicit formulae for the eccentric connectivity index and Wiener index of 2-dimensional square and comb lattices with open ends. The formulae for these indices of 2-dimensional square lattices with ends closed at themselves are also derived. The index for closed ends case divided by the same index for open ends case in the limit N →&infin defines a novel quantity we call compression...

متن کامل

Dirac-Connes Operator on Discrete Abelian Groups and Lattices

A kind of Dirac-Connes operator defined in the framework of Connes’ NCG is introduced on discrete abelian groups; it satisfies a Junk-free condition, and bridges the NCG composed by Dimakis, MüllerHoissen and Sitarz and the NCG of Connes. Then we apply this operator to d-dimensional lattices. [email protected] [email protected]

متن کامل

Noncommutative Geometry of Lattices and Staggered Fermions

Differential structure of a d-dimensional lattice, which essentially is a noncommutative exterior algebra, is defined using both reductions in 1-order plus 2-order of universal differential calculus in the context of NCG developed by Dimakis et al , and the formalism adopting a Dirac-Connes operator proposed by us recently within Connes’ NCG. Metric structure on this lattice and on differential...

متن کامل

A characterization of multiwavelet packets on general lattices

The objective of this paper is to establish a complete characterization of multiwavelet packets associated with matrix dilation on general lattices $Gamma$ in $mathbb R^d$ by virtue of time-frequency analysis, matrix theory and operator theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001